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Abstract 

The equation governing radial pulsations of fully relativistic stars is derived and expressed 
in terms of quantities which are continuous even across density discontinuities which 
occur, e.g., in zero-temperature stellar models that undergo electron capture. When 
expressed in terms of these quantities, the pulsation equation can be integrated through 
density discontinuities without any special treatment of these points being necessary. 
Expressions for the adiabatic index and pulsation energy are derived in a simple way. 

1. Introduction 

Most Newtonian calculations on stellar models are carried out in 
Lagrangian (Landau & Lifshitz, 1959) coordinates, since in these coordin- 
ates, fixed in the matter composing the star, nuclear physics, opacity and 
thermodynamic calculations are the easiest to carry oat. For example, 
thermodynamic calculations for moving media are much more complicated 
than for stationary media. An example of a Lagrangian coordinate is the 
mass fraction of a star. 

Lagrangian coordinates [known as comoving coordinates in general 
relativity (see for example, Adler et al., 1965)] have similar advantages in 
general relativistic calculations. However, these coordinates do not seem 
to have been applied to the problem of stellar model exhibiting small radial 
pulsations. The pulsation equations for stars exhibiting smooth changes 
in composition with radius when unperturbed and instantaneous changes 
in composition with stellar pulsations has been derived in a number of  ways 
by a number of  different authors (Taub, 1962; Chandrasekhar, 1964; Cocke, 
1965; Harrison et al., 1965). Chandrasekhar, for example, works in Eulerian 
coordinates but introduces 'Lagrangian displacements'. 

In Section 2 the pulsation equation is derived in a straightforward manner 
using comoving coordinates. In Section 3 the thermodynamic properties 
of  a pulsating material are considered in order to give a simple expression 
for the adiabatic index y. Section 4 gives junction conditions which allow 
the pulsation equations to be used even for stars with sudden changes in 
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268 JEFFREY M. COHEN 

composition. These junction conditions must be used, for example, when 
one treats zero-temperature white dwarf models which undergo electron 
capture (Cohen et al., 1969). Section 5 gives an expression for the pulsation 
energy of a radially pulsating star. 

2. Pulsation Equation 

In this section we obtain the general relativistic pulsation equation and 
equilibrium equations for a spherical star undergoing radial pulsations of 
small amplitude. These equations are obtained by assuming only Einstein's 
equation, conservation of baryons, spherical symmetry, and an equation 
of state. 

A. Einstein's Equations 
The line element in comoving coordinates for spherical symmetry takes 

the form 
ds 2 = -e~ dt z + e a dr 2 + R2(d 2 0 + sin z O d~ z) (2.1) 

He re / / and  R are functions of radius r and time t, and v is a function only 
of r. If v were a function of both r and t, the time dependence could be 
eliminated by changing the time scale. Therefore v can be assumed to be 
a function of r only without loss of generality. In the sequel we use the 
convention x ~ = t, x 1 = r, X 2 = 0 ,  X 3 = 4 "  

For this line element three of Einstein's equations G "v = 8~rT ~ become 

2Rlo = ~oR1 + vl Ro (2.2) 

from the G x~ = 87rT 1~ = 0 equation, 

87rp = exp(--//) ( - - 2 ~  -1 RlZRE+ A I ~ ) +  R-2 + exp(-v) (~~ 2 + , ~ 0 ~ )  

(2.3) 
from the G ~176 equation, and 

8rrp=exp(-h)(~2 + v l ~ )  - R - 2 - e x p ( - v ) ( ~ - - ~  + ~2 ) (2.4) 

from the G 1~ equation. Here the stress energy tensor for a perfect fluid 
(Landau & Lifshitz, 1959) 

T ~v = (p +p) U ~' U ~ +g~"p (2.5) 

takes the simple form in comoving coordinates 

To O = -p  Tl I = T z  2 = T3 3 = p  (2.6) 

where p is the geometrized density (equal to Gc -2 times the density in cgs 
units), p is the geometrized pressure (equal to G c  - 4  times the pressure in 
cgs units), and the 4-velocity U,  = 30 , ,  since the fluid particles are fixed 
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relative to the comoving coordinates. The subscripts 0 and 1 denote differ- 
entiation with respect to x ~ and x 1, respectively. 

B. Conservation Laws 
Because of the Bianchi identities (Landau & Lifshitz, 1962), Einstein's 

equations give rise to the conservation laws 

TV~;v = 0 (2.7) 

The conservation laws take the form 

O=po +(p+p) (~+ ~ ~ ~  (2.8) 

for/z = 0, and 
-~(p +p) 

(2.9) Pl 2 
f o r / z =  1. 

C. Small PuIsations 
For equilibrium stellar model calculations one can assume R = r, and 

the equations (2.2), (2.3), (2.4), and (2.9) above reduce to the usual expression 
for a non-pulsating star (Cohen et al., 1969). For small pulsations about 
the equilibrium model we assume 

R = r + ~ (2.10) 
where ~: < r. 

The corresponding change in the other quantities are given by 

8p = p - ~ (2.10a) 

3p = p  - f i  (2.10b) 

8h = A - A (2.10c) 

8v = 0 (2.10d) 

where the barred quantities represented equilibrium values. 8v vanishes, 
since v is not a function of time. 

Substituting the perturbed quantities of equation (2.10) into equations 
(2.2), (2.3), (2.4), (2.8) and (2.9) yields, respectively: 

which integrates to 
2r = 8Ao + vl ~:o (2.11) 

2~1 = ~ + F l ~, (2.11a) 

1 
8rr~=exp(-A) _ 1 + ~ '  (2.12) 
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the corresponding equation for 8p is not needed in the derivation of the 
pulsation equation, 

8~rSp = exp (-~)[r-a ( 2 ~ , -  ~7{)+ ~ ( ~ , - ! ) - - 8 a ( ~ +  ~ ) ]  

+ 7 -- exp (-v) 2~:;o (2.13a) 

. . . .  /SAo 2 ! )  0 = 8p0 + (p +p)~--~- + --20 (2.14) 

which integrates to 

and finally we obtain 
8 0 = -(t5 +/5) I 2 r ] (2.1 4a) 

--(15 + p) v, (2.15) 
P~ 2 

8p, -(Sp + 8p) v, (2.15a) 
2 

Equilibrium stellar models can be obtained via equations (2.12), (2.1 3) and 
(2.15) plus an equation of state. 

The pulsation equation is obtained by working with equation (2.15a), 
an equation which came out of the conservation law. Adding to both sides 
of equation (2.1 5a) the quantity [vi + (51/2)] 8p and grouping terms yields 

exp ~ - - ~ - - )  - -  8pj 1 = - ~- ~ op (2. 1 6) 

The quantity vi + Xl can be eliminated from equation (2.16) by substituting 
the result of adding equations (2.12) and (2.13) 

8rr(15 +/5) = exp (-~) vl + ~ (2.17) 
r 

into equation (2.16), yielding 

[ 2v+Yt~[ [2v+)t\ ] Vl e x p ~ - ~ ] l e x p ~ T - ) 3  p~ =-~Sp+4rr(~+/5)earSp (2.1S) 

which yields the pulsation equation once 8p and 3p are eliminated. 
Substituting equation (2.1 l a) into equations (2.13a) and (2.14a) yields, 

respectively, 

8rrSp=exp(-70( r32se v,~:l V l l ~ ) r  + + 7  5--'2~ !exp(--v)~0o (2.19) 



PULSATING STARS IN GENERAL RELATIVITY 271 

and 

When equations (2.19) and (2.20) are substituted into equation (2.18) and 
terms are cancelled it reduces to 

exp[ 2v+ X~[exp(2V+ J{~Sp] 
\ - ~ ! k  \ ~ !  J, 

vl2~ 1)~2- (~-v)~oo) (2 .21)  = (fi + p ) ( ~  + - ~ -  + ( J -  exp 

The quantity e ~ -  1 can be eliminated via equation (2.13) and then vl 
eliminated by using equation (2.15) which reduces equation (2.21) to 

exp(-2v;~)Iexp(2V2~)SP], 

/ pl 2 
- e ~ 4t5, 

= ! + * - '  + 8rr(15 + p ) p r  ~ -  (t5 +p)exp(7~- v) ~:oo (2.22) 
\15 +p  r 

To put equation (2.22) into Sturm-Liouville form (Margenau & Murphy, 
1961), @ must be eliminated from equation (2.22). To do this let us assume 
an equation of state n = n(p,p), where n is the baryon number density. 
Differentiation yields 

8n = 50 Opn[v+ 8p Op n[o (2.23) 
o r  

1 
3/) = ~ [Sn - 8p 0p nip1 (2.24) 

This can be expressed in terms of the displacement ~: if one invokes con- 
servation of baryons. 

D. Baryon Conservation 
If there is no mass loss from the stellar model, the relation 

(nU~);~ = 0 (2.25) 

gives rise to conservation of baryons (Landau & Lifshitz, 1959). This can 
also be shown by integrating equation (2.25) over a portion of space-time 
and using the four-dimensional divergence theorem, as has been done 
elsewhere for a similar problem (Cohen, 1968), carrying out the covariant 
differentiation in equation (2.23) yields 

which becomes 

18 

0 no Ao 2Ro 
= -- + ~- q (2.26) 

n R 

8n+SA+2~: 
0 = ~ -  ~- r '  (2.27) 
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if we assume small pulsations, equation (2.10), define 

8n = n - ~, (2.27a) 

integrate with respect to time, and set the arbitrary function equal to zero. 
Substitution of equation (2.1 l a) into equation (2.27) yields 

8n [r 2 exp (--v/2) ~:11 
n r 2 exp (--v/2) (2.28) 

after grouping terms. Similarly, substitution of equation (2.11a) into 
equation (2.14a) yields 

[r 2 exp (-v/2) ~]i (2.29) 
8p = --(/5 +/~) r2exp(_v/2 ) 

Substitution of equation (2.28) and (2.29) into equation (2.24) yields 

p _ [r z exp (-v/2) ~:]1 
= - y p  r--f~exp ~ 7  ~ (2.30) 

where the function y is given by 

[n - (~ + p) Oon[v] (2.31) 
y = ffOvnlo 

The function 9' was chosen so that it would satisfy 

@ = rpap 

p + P  

Substitution of equation (2.30) into equation (2.22) eliminates 8p and yields 
the pulsation equation in the Sturm-Liouville form.  

Without loss of generality, one can assume that the pulsation amplitude 
can be represented as a sum of sinusoids since the pulsation equation is 
linear in ~. When boundary conditions are imposed, each normal mode 
obeys an eigenvalue equation with eigenfunction ~: and eigenvalue 2rr/(pul- 
sation period for that oscillation mode). The eigenfunctions ~: are orthogonal 
since the usual orthogenality conditions apply to all equations of the 
Sturm-Liouville form. 

3. Adiabatic Index 

In this section we express 9, in terms of pressure and density alone. This 
is most easily done in comoving coordinates where the matter is at rest 
relative to the coordinates. Consequently, the familiar laws of thermo- 
dynamics can be used without alteration, and difficulties associated with 
the thermodynamics of moving media are circumvented. 

In this section we will need the relationt 

T d s = d U  + p d V  0.1)  

"~ See Zemansky (1957), 
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which relates the entropy change dS to the change of internal energy dU 
and the work done by the system pdV. Here T is the temperature, p the 
pressure and V the volume of the system. For convenience, let us consider 
N particles occupying a volume V at an arbitrary point in the system. For 
convenience assume that the various quantities are constant throughout 
the volume V. Thus we have the relations 

U N 
P = V and n = V 

which yield 
dn 

TdS = -(p +p) n + dp (3.2) 

since d(pV) + p d V =  (p + p)dV + Vdp. 
Solving for n yields 

,dn T dS 
n = (p + p ) ~ p -  ~ n ~ p  (3.3) 

Substituting this into equation (2.31) yields 

{(p + p) [(dn/+) - a~ nlp] - ( T / V )  n ( a s / + ) }  

y -- pOpn[o 
which reduces to 

[(p + p) ap nlo (dp/dp) - ( T / V) n(dS /dp) ] (3.4) 
y - _ _  pOpn[o 

when the chain rule is used dn/dp= Opnlp + Opn[odp/dp. For constant 
entropy, the adiabatic index Y takes the simple form 

_ P + p OP s (3. 5) Y p Op 

This relation gives the adiabatic index y as a function of pressure and 
density and requires only an equation of state of the formp = p(p). It should 
be noted that the quantity app[s is not necessarily given by the static equation 
of state used to compute the equilibrium models. The ease with which the 
results of this section were obtained, of course, is due to the use of a reference 
frame moving with the matter. 

4. Boundary Conditions 

To obtain an equilibrium model one integrates the equations (2.12) 
(2.13) and (2.15) subject to boundary conditions. Before stating the 
boundary conditions it is convenient to simplify equation (2.12) and bring 
it into a form similar to that in the corresponding Newtonian treatment. 
Combining terms on the right-hand side of Equation (2.12) yields (Cohen 
& Cohen, 1969) 

87rr 2 t5 = {r[1 -- exp (-A)]}, (4.1) 
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and the substitution 
exp (-A) = 1 - 2re(r) r - '  (4.2) 

reduces equation (4.1) to the familiar 

ml = 41rr 2 t5 (4.3) 

Here m is the geometrized mass (Harrison et al., 1965) equal to G/c 2 times 
the mass in units of grams per cubic centimeter. The mass m is in units 
of centimeters if the gravitational constant G and the light speed c are in 
cgs units. 

At the center of the star we require:/5 = some assumed central density 
(different choices given different models) and m = 0,_while at the outer 
boundary of the star we require that e ~ = 1 - 2mr -1 ; e a will automatically 
be continuous if m is. 

To determine the frequencies ~o of the normal modes of oscillation of 
a star undergoing adiabatic radial pulsations, one assumes a sinusoidal time 
dependence ~:00 = -to2~: in equation (2.22), and imposes boundary condi- 
tions. In solving this problem, it is convenient to define two new 
functions 

Y=  r2exp (2 )~  and ~:=-~r (4.4) 

The former is strictly for computational convenience (usually problems of 
this type must be solved numerically) while the latter ~: is the relative 
pulsation amplitude. For a discussion for a numerical method for 
determining these quantities, see, for example, Cohen et al., 1969. 

The boundary condition at the center can be found by assuming a power 
series expression of y about the center giving y ~ r 3 or y ~ const. At the 
center the relative pulsation amplitude ~: must be finite but its value is 
arbitrary, the value 1 is a convenient choice. Consequently, the boundary 
condition for y near the center is 

y = r 3 exp (4.4a) 

Similarly, expanding y about the outer boundary of the star gives 

( 3v~ ~) 4ev + c~ ra m-l § mr-1 (4.4b) 
Yl = Y exp - yr 

if p/p -+ 0 there. The arguments used in obtaining these boundary con- 
ditions are exactly the same as in the neutonian case (Ledoux & Walraven, 
1958) when ~: is also introduced (see also, for example, Meltzer & Thorne, 
1966; Bardeen et al., 1966). 

A. Junction Conditions 
White dwarf and neutron star models are often idealized as zero-tempera- 

ture models. This simplifies the physics but often complicates the construc- 
tion of stellar models. This is because, for example, there are density 
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discontinuities at points where electron capture takes place. Such points 
require careful treatment if physically reasonable results are to be obtained. 

In general relativity, one matches surfaces across which density dis- 
continuities take place by matching the first and second fundamental forms 
(Schild, 1967). In comoving coordinates which we are using here, the surface 
is described by the simple equation r = const. In most other coordinate 
systems, the calculations to follow, as well as the results, would be much 
more complicated. 

On the surface r = const., the first fundamental form takes the form: 

ds  2 = - e  ~ d t  2 + R2(dO 2 + sin 20d~ 2) (4.5) 

If  the time and angular coordinates are kept the same on both sides of 
the constant r surface, continuity of the first fundamental form implies that 
e ~ and R 2 be continuous across the surface. In more mathematical terms 
this condition takes the form: 

e~]_ + = 0 and RzI_ + = 0 (4.6) 

where + and - denote the limits taken from above and below the surface 
r = const., respectively. For small oscillations the condition from equation 
(2.10) implies that r is continuous across the surface, i.e., 

~[_+ = 0 (4.7) 

since the coordinate r is continuous and R = r + ~. 
As stated above, other junction conditions are generated by matching 

the second fundamental form, which is defined by 

K #  = n~: ~ (4.8) 

Here n~ is the normal to the surface and the semicolon denotes covariant 
differentiation in the fl direction. Inspection of equation (3.7) shows that 
the second fundamental form K ~  describes the rate at which the normal 
n turns. More important for our purposes, continuity of the second funda- 
mental form guarantees that the derivative of the metric with respect to 
a coordinate normal to the surface is continuous in a Gaussian normal 
coordinate system. This condition guarantees that the geometries fit to- 
gether smoothly (Schild, 1967; Lichnerowitz, 1955). 

Carrying out the differentiation indicated in equation (4.8) yields 

K ~  = n~; ~ = n~, ~ + 7~ h~ na (4.9) 

where the 7~AO are the usual Christoffel symbols when K~/~ is expressed 
relative to a coordinate basis (Landau & Lifshitz, 1962). If  the frame of  
reference (i.e. the basis vectors with respect to which the components of  
vectors are expressed) is chosen so that the basis vectors are orthogonal 
unit vectors (as is done in vector analysis) and one of these basis vectors 
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el is chosen along the unit normal n, the components of the normal are 
not a function of position. Consequently, the ordinary derivatives of n 
vanish and the second fundamental form takes the simple form 

K~t~ = y ~  ~ (4.10) 

When an orthonormal basis is used, the quantities y~Ag are called Ricci 
rotation coefficients, since they describe the rotation of the frame of refer- 
ence (Brill & Cohen, 1966b). 

A convenient set of orthonormal basis vectors ~o~ (often called Cartan 
frames) is 

6oo = exp dt 

r 6oa--exp ~ dr (4.11) 

6o2 = R dO 

oJ 3 = R sin O d~ 

Since the Ricci rotation coefficients describe the rotation of the basis 
vectors, differentiation of the basis vectors co, gives the rotation coefficients 
from the relation 

dro t~ = -6o~',, co" (4.12) 

where 
6o~ = ~ 6o~ (4.13) 

and y ~  + ~ , ~  = 0. 
In other words, the derivative of any basis vector can be expressed in terms 

of the basis vectors. This is true, since any vector or tensor can be expressed 
in terms of the basis vectors (definition of the basis vectors). 

Carrying out the differentiation of equation (4.11) as indicated in 
equation (4.12) yields the differentials 

d6o~ l co e x p ~ - ~ )  [ A+v'~ 

(4.14) 
[ h+v~  

d6o' = [ e x p ( ~ ) ] o d t d r = [ e x p ( ~ ) ] o 6 o ~  

and similarly 

d6o 2 --- exp wl 6o2 + R exp (v/2) 

RI w16o3 + Ro o 3 cot o d6o 3 
R exp (A/2) R ex~v/2)  6o o~ + - ~ -  

co 2 o) 3 
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Comparison with equation (4.13) yields 

0) + [exp (~)]o 0) } exp ( -  ~-~-v- ) 

0)21 = R 1 exp (@)R -1 r 

- -v  -1 0)20 = R0exp ( 7 )  R 0 )2  

cot 0 j 
0)3 2 ~ - - ~  f.O 

0)31= Rl R-I exp (?)603 

-1 --7) 
CO3o = Ro R exp(~-)w 3 

277 

(4.15) 

The Ricci rotation coefficients can be obtained from equation (4.15) by 
inspection if one compares with equation (4.13), giving: 

~+v v ,0,0 =ex ( 

'~ 2 o 

=  3,3 = . , . - ,  exp ( ? )  (4.16) 

y323 = c o t  OR -1 

Comparison of equations (4.10) and (4.16) gives the non-vanishing com- 
ponents of second fundamental form 

K a o = - e x p - T  exp ~ l 2 

K22 = K33 = R 1 R  -1 exp (@) (4.17a) 

Consequently, the quantities 

exp (@)Vl and R, R-I exp (@) 

are continuous across the density discontinuity. In concise terms the addi- 
tional junction conditions become 

e x p  ip 1 [_+ =- 0 and R1R -1 exp = 0 (4.18) 
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Substitution of the junction conditions (4.18) and (4.6) into equation (2.4) 
yields a junction condition in terms of the physical quantity pressure: 

p l_  + = 0 (4.19) 

Thus, as in neutonian mechanics, the pressure must be continuous in 
Lagrangian (comoving) coordinates. 

From equation (2.10b) we have p = p  + ~p; consequently, p and ~p are 
continuous if equation (4.19) is satisfied in each order. The condition 

 pl_ + = 0 (4 .20)  

implies that the right-hand side of equation (2.30) is continuous across the 
density discontinuity. This, together with the requirement that ~: be con- 
tinuous, allows the eigenvalue equation (2.22) to be integrated across density 
discontinuities without any special treatment of these surfaces. For a dis- 
cussion of numerical methods for treating such problems see, for example, 
Cohen et al. (1969) and the references cited there. 

5. Pulsation Energy 

In general relativity, the pulsation energy of a star can be found by finding 
the total energy of the pulsating star and subtracting the energy of the same 
star when it is not pulsating. The pulsation energy has been given by a 
number of authors [see, for example, Harrison et al. (1965)], but for 
completeness we will derive it here in a new and simpler way using the 
standard Schwarzschild line element 

ds 2 = exp (-v) dt 2 + e a dr 2 + r 2 dO 2 + r 2 sin 2 0 d~ 2 (5.1) 

Here the fluid moves relative to the coordinates which are fixed in space. 
The quantities v and 2~ are functions of r only. 

In these coordinates, the total energy (Schwarzschild mass) of the star 
is given by (Landau & Lifshitz, 1962) 

m = - f  To O r 2 sin 0 dr dO d(~ (5.2) 

The calculations simplify considerably if one notes that since the pulsation 
energy is constant during the adiabatic pulsations, it can be computed at 
any instant. In particular, the instant when the star passes through its 
equilibrium configuration is especially convenient, since all the potential 
energy terms vanish and only the kinetic energy terms contribute. At that 
instant, the stress-energy tensor (2.5) takes the form 

-To o = p  + (t5 + p)exp (~ - ~;)~2 (5.3) 

to second order in ~. Substituting the expression (5.3) for the stress-energy 
tensor into the expression for the total energy (5.2) yields 

m = 47rf (p + (/3 + p )  exp(~ - f,)~Z)rZdr (5.4) 
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Here the barred quantities fi, p, etc., are unperturbed quantities, while the 
total mass m and the density p have contributions from the kinetic energy 
of pulsation. 

The mass and density can be expressed as an unperturbed value plus a 
perturbation 

rn = rfi + m2 (5.5) 

p =  p-l- p2 

Terms of higher order than second have been dropped. 
The Schwarzschild mass of the unperturbed star r~ and the pulsational 

energy m 2 are obtained by substitution of equation (5.5) into (5.4), giving, 
after collecting terms of the same order, 

rfi = 4~r f/5/~2 dt ~ (5.6) 

mz = 4zr f ~2 d~[pz + (~ + P)exp (A - ~)~2] 

Thus, the problem has been reduced to finding Pz which can be expressed 
in terms of the baryon number density n via equation (3.2) 

(~ + ; )  n~ 
(5.7) P2 fi 

since the entropy is constant for adiabatic pulsations. 
To find the baryon number density n~ in the frame of the metric (5.1), 

one can use the relation 
n d V =  nz dVl (5.8) 

between the number density n in the rest frame of the matter and that in 
the frame of the metric (5.1). Since the 4-volume element is invariant, with 
respect to coordinate transformations, the 3-volume elements are related 
by 

~/([gl)dVzdt = exp ~ dV~dt = dVdr  (5.9) 

the number densities are related by 
[ - v \  d-r 

n = n t e x p ~ - ) ~  (5.10) 

where 

d~- = exp dr[1 - exp (A - (5.11) 

The baryon number density n~ is defined as 

dA dA 
n~ = dVz 4zrr 2 dr exp ()/2) (5.12) 

where A is the baryon number (an invariant). Here the volume element 
dV~ is not equal to the volume element d~  of the unperturbed star. This 



280 J E F F R E Y  M.  C O H E N  

is because the pulsational kinetic energy contributes to the mass. Con- 
sequently, we obtain 

e x p ( - ~ ) = l - 2 - - m = l  2rh 2mz 
?" t" r 

o r  

exp (~2~) = exp (-~2~) (1 - - ~  ea) 1/2 (5.13) 

Thus, the baryon number density n~ is related to the number density 

dA h= 
47rf2 df exp (5/2) 

of the unperturbed star by 

n~ =n0(1-27Ze'a)l/2 (5.14) 

Substitution of equations (5.11) and (5.14) into (5.12) yields 

=no(1 2 -  _\1/2 n -YL~ea) [1-expO~-v)~2] 1/z (5.15) 

Expansion of equation (5.15) yields 

-(nz/h) = "z f-1 e ~ + �89 exp (5 - ~) ~2 (5.16) 

The pulsational energy is obtained by substitution of equation (5.16)into 
(5.7), and the resulting expression into (5.6), yielding the integral equation 

mz=47r f f2df(/5+/5) exp(X-13)-~--m2f-le ~ (5.17) 
o 

This equation can be solved by converting it into a differential equation, 
which can be accomplished via differentiation with respect to r0, yielding: 

(m2)ro + 4rrr0(t 5 + P) e~ m2 = &rr02(t5 + P) exp (5 - ~) ~2 2 (5.18) 

The left-hand side can be expressed as a derivative by using equation (2.17) 
once again and integrating 

cro 

i[exp(~-~)m2]rdr=27rJ r2dr(~+ fi)exp (3X2---~v) ~ 2 (5.19) 

yielding the expression for the pulsation energy. 

rn2=2zrf r2dr(15+fi)exp(~)~ z 

In the newtonian limit, 
Walraven (1958). 

(5.20) 

this expression reduces to that of Ledoux & 



PULSATING STARS IN GENERAL RELATIVITY 281 

6. Discussion 

In Section 2 the radial pulsation equation (2.22) was derived using 
comoving (Lagrangian) coordinates. By the use of these coordinates, it was 
possible to obtain the adiabatic index (3.5) in a simple manner using standard 
relations from thermodynamics. No account of mass motion had to be 
taken, since there is none relative to the comoving coordinates. In Section 
4 it was shown that the quantities ~:, 8p [equation (2.30)] e ~ and R 2 are 
continuous across density discontinuities. Consequently, if the pulsation 
equation is expressed in term s of the dependent variables 3p and r 2 exp (-v/2)~: 
(which are continuous across density discontinuities), it can be integrated 
across density discontinuities without any special treatment of these points 
being necessary. For example, with zero-temperature white dwarf and 
neutron star models, one does not have to integrate out from the center 
and in from the surface and match across the discontinuity. One can merely 
integrate out from the center and stop at the surface. This is especially 
convenient with stellar models which exhibit electron capture at a number 
of  different thresholds, and consequently show density discontinuities each 
time A / Z  changes. This method has been applied to white dwarf models 
(Cohen et al., 1969). A simple derivation of the pulsation energy is given 
in Section 5. 
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